Endothelial colony-forming cell conditioned media promote angiogenesis in vitro and prevent pulmonary hypertension in experimental bronchopulmonary dysplasia.
نویسندگان
چکیده
Late-outgrowth endothelial colony-forming cells (ECFCs), a type of circulating endothelial progenitor cell (EPC), may contribute to pulmonary angiogenesis during development. Cord blood ECFCs from preterm newborns proliferate more rapidly than term ECFCs but are more susceptible to the adverse effects of hyperoxia. Recent studies suggest that bone marrow-derived EPCs protect against experimental lung injury via paracrine mechanisms independent of vascular engraftment. To determine whether human umbilical cord blood ECFCs from preterm and term newborns have therapeutic benefit in experimental neonatal lung injury, we isolated cord blood ECFCs from full-term and preterm newborns and prepared ECFC-conditioned medium (CM) to test its therapeutic benefit on fetal pulmonary artery endothelial cell (PAEC) proliferation and function as well as alveolar type 2 (AT2) cell growth. PAECs and AT2 cells were isolated from late-gestation fetal sheep. Additionally, we administered both ECFCs and ECFC-CM to bleomycin-exposed newborn rats, an experimental model of bronchopulmonary dysplasia (BPD). Both term ECFC-CM and preterm ECFC-CM promoted cell growth and angiogenesis in vitro. However, when ECFC-CM was collected during exposure to mild hyperoxia, the benefit of preterm ECFC-CM was no longer observed. In the bleomycin model of BPD, treatment with ECFC-CM (or CM from mature EC) effectively decreased right ventricular hypertrophy but had no effect on alveolar septation. We conclude that term ECFC-CM is beneficial both in vitro and in experimental BPD. During oxidative stress, preterm ECFC-CM, but not term ECFC-CM, loses its benefit. The inability of term ECFC-CM to promote alveolarization may limit its therapeutic potential.
منابع مشابه
Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth.
BACKGROUND Bronchopulmonary dysplasia and emphysema are life-threatening diseases resulting from impaired alveolar development or alveolar destruction. Both conditions lack effective therapies. Angiogenic growth factors promote alveolar growth and contribute to alveolar maintenance. Endothelial colony-forming cells (ECFCs) represent a subset of circulating and resident endothelial cells capable...
متن کاملMesenchymal Stromal Cell Therapy in Bronchopulmonary Dysplasia: Systematic Review and Meta‐Analysis of Preclinical Studies
Extreme prematurity is the leading cause of death among children under 5 years of age. Currently, there is no treatment for bronchopulmonary dysplasia (BPD), the most common complication of extreme prematurity. Experimental studies in animal models of BPD suggest that mesenchymal stromal cells (MSCs) are lung protective. To date, no systematic review and meta-analysis has evaluated the preclini...
متن کاملAberrant Pulmonary Vascular Growth and Remodeling in Bronchopulmonary Dysplasia
In contrast to many other organs, a significant portion of lung development occurs after birth during alveolarization, thus rendering the lung highly susceptible to injuries that may disrupt this developmental process. Premature birth heightens this susceptibility, with many premature infants developing the chronic lung disease, bronchopulmonary dysplasia (BPD), a disease characterized by arres...
متن کاملEffect of Propranolol on Angiogenic Factors in Human Hematopoietic Cell Lines in vitro
Background: Beta-adrenergic blocking agents have been broadly used for treatment of many cardiovascular diseases such as arterial hypertension and ischemic heart failure. Anti-tumoral, anti-inflammatory and anti-angiogenesis effects of propranolol (a non-selective beta-adrenergic blocker) have been shown. Angiogenesis (replenish of the pre-existing vascular networks) plays a critical role in s...
متن کاملSildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury.
RATIONALE Bronchopulmonary dysplasia (BPD), the chronic lung disease of preterm infants, and pulmonary emphysema, both significant global health problems, are characterized by an arrest in alveolar growth/loss of alveoli structures. Mechanisms that inhibit distal lung growth are poorly understood, but recent studies suggest that impaired vascular endothelial growth factor signaling and reduced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 305 1 شماره
صفحات -
تاریخ انتشار 2013